Recent developments in the ion/ion chemistry of high-mass multiply charged ions.
نویسندگان
چکیده
The ability to form multiply charged high-mass ions in the gas-phase, most notably via electrospray ionization (ESI), has allowed the study of many different combinations of positively and negatively charged ions. The charged products are directly amenable to study with mass spectrometry. Ion/ion reactions have proved to be "universal" in the sense that the high exothermicities and large rate constants associated with essentially any combination of oppositely charged ions lead to reaction regardless of the chemical functionalities associated with the ions. These characteristics make ion/ion reactions potentially analytically useful provided reagent ion densities and spatial overlap of the oppositely charged ions are high. These conditions can be readily met by several instrumental configurations. The focus of this review is to highlight developments in this field since 1998. Novel instrumentation has been developed to study ion/ion reactions, such as atmospheric pressure ion/ion reactors followed by mass analysis, or electrodynamic ion trap mass spectrometers, which are used as reaction vessels at sub-atmospheric pressures. A wide variety of reaction phenomenologies have been observed in various ion/ion reactions, with proton transfer being the most common. New phenomenologies have been observed in the reactions of multiply charged positive ions with singly charged negative ions, including cation transfer and cation exchange. A new series of reactions between multiply charged positive ions and multiply charged negative ions have been made possible by recent instrumentation developments. These reactions have led to the observation of proton transfer and complex formation. These observations have provided new insights into ion/ion reaction dynamics and a bound orbit model appears to best account for experimental results. New applications are also discussed for a several ion/ion reaction.
منابع مشابه
Ion/ion chemistry of high-mass multiply charged ions.
Electrospray ionization has enabled the establishment of a new area of ion chemistry research based on the study of the reactions of high-mass multiply charged ions with ions of opposite polarity. The multiple-charging phenomenon associated with electrospray makes possible the generation of multiply charged reactant ions that yield charged products as a result of partial neutralization due to i...
متن کاملMiniaturized ultra high field asymmetric waveform ion mobility spectrometry combined with mass spectrometry for peptide analysis.
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (ultra-FAIMS) combined with mass spectrometry (MS) has been applied to the analysis of standard and tryptic peptides, derived from α-1-acid glycoprotein, using electrospray and nanoelectrospray ion sources. Singly and multiply charged peptide ions were separated in the gas phase using ultra-FAIMS and detected by ion tra...
متن کاملElectrospray ionization high-resolution ion mobility spectrometry-mass spectrometry.
A hybrid atmospheric pressure ion mobility spectrometer is described which exhibits resolving power approaching the diffusion limit for singly and multiply charged ions (over 200 for the most favorable case). Using an electrospray ionization source and a downstream quadrupole mass spectrometer with electron multiplier as detector, this ESI-IMS-MS instrument demonstrates the potential of IMS for...
متن کاملUse of a single-quadrupole mass spectrometer for collision-induced dissociation studies of multiply charged peptide ions produced by electrospray ionization.
The feasibility of obtaining the collision-induced dissociation (CID) spectra of multiply charged peptide ions produced by electrospray ionization in a simple and inexpensive single-quadrupole mass spectrometer is demonstrated. Collisional activation was carried out in the high-pressure region between the capillary exit and the skimmer entrance to the mass analyzer. The CID of multiply charged ...
متن کاملInvestigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS.
Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mass spectrometry reviews
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2005